(资料图)
那个方法应该是解(ax方加bx加c)这样的方程式的。十字相乘左边两个数(上下位置放的)相成等于a,右边两个数(同样上下放)相成等于c.然后前两个数的上面的数乘以后两个数下面的数,前两个数下面那个数乘以后两个数上面那个数,然后把两次的得数相加等于b,这样基本就可以分成(左边上面的数乘以x加上右边上面的数)乘以(左边下面的数乘以x加上右边下面的数)注意括号啊!分成这样就容易解了,呵呵
二次三项式,十字相乘,因式分解,窍门就是,结合分组分解法一同使用,正如 x" + (a + b)x + ab = ( x + a )( x + b )中间的一次项 mx = (a+b)x ,首先一分为二,拆开变成 ax + bx ,接下来把四个项,分两组提公因式,做起来就轻松多了;Q 关键是一次项怎样一分为二,就由常数项的正负来决定,一次项不变,只要常数项变成相反数,一次项就要改变一分为二的方式;Q 如果常数项是正数,一次项就是拆开两个绝对值比原来小的两个项;就连完全平方的式子,这样做起来也会觉得更加可靠。例如x" + 10x + 25= x" + 5x + 5x + 25= x( x + 5 ) + 5( x + 5 )= ( x + 5 )"常数项都是 +25,一次项就都是分开 10=5+5,x" - 10x + 25= x" - 5x - 5x + 25= x( x - 5 ) - 5( x - 5 )= ( x - 5 )"类似的常数项为正数x" + 10x + 24= x" + 4x + 6x + 24= x( x + 4 ) + 6( x + 4 )= ( x + 4 )( x + 6 )常数项都是 +24,一次项就都是分开 10=4+6,x" - 10x + 24= x" - 4x - 6x + 24= x( x - 4 ) - 6( x - 4 )= ( x - 4 )( x - 6 )Q 如果常数项是负数,一次项系数就是分开两个项的相差数;x" + 10x - 24= x" + 12x - 2x - 24= x( x + 12 ) - 2( x + 12 )= ( x - 2 )( x + 12 )常数项都是 -24,一次项就都是分开 10=12-2,x" - 10x - 24= x" - 12x + 2x - 24= x( x - 12 ) + 2( x - 12 )= ( x + 2 )( x - 12 )看到了吧,一次项和常数项,绝对值都是 10x 和 24,分解因式却有 4 种结果,会不会看得晕头转向呢?怎么办?只要这样一步一步地写出来,就肯定不会出错了。x" ± 5x ± 6x" ± 10x ± 24x" ± 15x ± 54x" ± 20x ± 96x" ± 25x ± 150都是这样有 4 种结果,使用这个分解因式的方法,你自己也试一试吧。只要熟悉这个方法,就连二次项系数不是 1 也同样方便,例如4x" - 31x - 45 对着 31,我们恐怕不知道怎样分开两项可是看到 -45,我们都会想到 4X9=36,5X9=45,那么= 4x" - 36x + 5x - 45= 4x( x - 9 ) + 5( x - 9 )= ( x - 9 )( 4x + 5 )或者= 4x" + 5x - 36x - 45= x( 4x + 5 ) - 9( 4x + 5 )= ( x - 9 )( 4x + 5 )
初中的把一元二次方程的二次响系数花成两个数的乘再把后一个常数也花成两个数乘的形式然后再十子交叉得到一次项的系数
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。 5、十字相乘法解题实例: 1)、 用十字相乘法解一些简单常见的题目 例1把m
字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。 例题 例1 把2x^2-7x+3分解因式. 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 1 1 ╳ 2 3 1×3+2×1 =5 1 3 ╳ 2 1 1×1+2×3 =7 1 -1 ╳ 2 -3 1×(-3)+2×(-1) =-5 1 -3 ╳ 2 -1 1×(-1)+2×(-3) =-7 经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7. 解 2x^2-7x+3=(x-3)(2x-1). 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下: a1 c1 ╳ a2 c2 a1c2+a2c1 按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即 ax2+bx+c=(a1x+c1)(a2x+c2). 像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法. 例2 把6x^2-7x-5分解因式. 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 ╳ 3 -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用十字相乘法分解因式. 解 6x^2-7x-5=(2x+1)(3x-5) 指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式. 对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是 1 -3 ╳ 1 5 1×5+1×(-3)=2 所以x^2+2x-15=(x-3)(x+5). 例3 把5x^2+6xy-8y^2分解因式. 分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 ╳ 5 -4 1×(-4)+5×2=6 解 5x^2+6xy-8y^2=(x+2y)(5x-4y). 指出:原式分解为两个关于x,y的一次式. 例4 把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解. 问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了. 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 =2(x-y) ^2-3(x-y)-2 =[(x-y)-2][2(x-y)+1] =(x-y-2)(2x-2y+1). 1 -2 ╳ 2 1 1×1+2×(-2)=-3 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法. 例5 x^2+2x-15 分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3) (-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。 =(x-3)(x+5) 总结:①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q) ②kx^2+mx+n型的式子的因式分解 如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么 kx^2+mx+n=(ax+b)(cx+d) a b ╳ c d 通俗方法 先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写 1 1 X 二次项系数 常数项 若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。) 需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数) a b ╳ c d 第一次a=1 b=1 c=二次项系数÷a d=常数项÷b 第二次a=1 b=2 c=二次项系数÷a d=常数项÷b 第三次a=2 b=1 c=二次项系数÷a d=常数项÷b 第四次a=2 b=2 c=二次项系数÷a d=常数项÷b 第五次a=2 b=3 c=二次项系数÷a d=常数项÷b 第六次a=3 b=2 c=二次项系数÷a d=常数项÷b 第七次a=3 b=3 c=二次项系数÷a d=常数项÷b ...... 依此类推 直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d) 例解: 2x^2+7x+6 第一次: 1 1 ╳ 2 6 1X6+2X1=8 8>7 不成立 继续试 第二次 1 2 ╳ 2 3 1X3+2X2=7 所以 分解后为:(x+2)(2x+3)[编辑本段]⒉十字相乘法(解决两者之间的比例问题)原理 一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。 AX+B(1-X)=C X=(C-B)/(A-B) 1-X=(A-C)/(A-B) 因此:X∶(1-X)=(C-B)∶(A-C) 上面的计算过程可以抽象为: A ………C-B ……C B……… A-C 这就是所谓的十字相乘法。十字相乘法使用时的注意 第一点:用来解决两者之间的比例问题。 第二点:得出的比例关系是基数的比例关系。 第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。
Copyright@ 2015-2022 百科大全版权所有 备案号:豫ICP备2021032478号-16 联系邮箱:89 71 80 9@qq.com