【资料图】
二年级数学手抄报就是把学到的数学知识办成手抄报的形式写下了,给别人看的。
一元钱哪里去了 三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了? 分苹果 小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。 小咪的爸爸是怎样做的呢? 小马虎数鸡 春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问解放军,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗?来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“ 家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗
某店来了三位顾客,急于要买饼赶火车,限定时间不能超过16分钟。几个厨师都说无能为力,因为要烙熟一个饼的两面各需要五分钟,一口锅一次可放两个饼,那么烙熟三个饼就得2O分钟。这时来了厨师老李,他说动足脑筋只要15分钟就行了。你知道该怎么来烙吗? 数学的起源:数学是一门最古老的学科,它的起源可以上溯到一万多年以前。但是,公元1000年以前的资料留存下来的极少。迄今所知,只有在古代埃及和巴比伦发现了比较系统的数学文献。 远在1 万5千年前人类就已经能相当逼真地描绘出人和动物的形象。这是萌发图形意识的最早证据。后来就逐渐开始了对圆形和直线形的追求,因而成为数学图形的最早的原型。在日常生活和生产实践中又逐渐产生了计数意识和计数系统,人类摸索过多种记数方法,有开始的结绳记数,用石块记数,语言点数进一步用符号,逐步发展到今天我们所用的数字。图形意识和计数意识发展到一定程度,又产生了度量意识。 这一系列的发展演变逐渐形成了今天我们所熟悉的完整的数学这一门学科,它包括算术、几何、代数、三角、微积分、统计和概率(其实它一开始是人们为了钻研赌博而来的呢)……等等各个分支,而且还在不断发展下去。
有理数是整数和分数的统称,一切有理数都可以化成分数的形式。有理数可分为整数和分数也可分为三种,一;正有理数,二;0,三;负有理数。除了无限不循环小数以外的实数统称有理数。英文:rational number读音:yǒu lǐ shù整数和分数统称为有理数,任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。任何一个有理数都可以在数轴上表示。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。 无限不循环小数称之为无理数(例如:圆周率π)有理数和无理数统称为实数。所有有理数的集合表示为Q。以下都是有理数: (1) 整数:正整数、0、负整数统称为整数。 (2)分数:正分数、负分数统称为分数。 (3)小数:有限小数、无限循环小数。 如3,-98.11,5.72727272……,7/22都是有理数。全体有理数构成一个集合,即有理数集,用粗体字母Q表示,较现代的一些数学书则用空心字母Q表示。有理数集是实数集的子集,即Q?R。相关的内容见数系的扩张。有理数集是一个域,即在其中可进行四则运算(0作除数除外),而且对于这些运算,以下的运算律成立(a、b、c等都表示任意的有理数):①加法的交换律 a+b=b+a;②加法的结合律a+( b+c)=(a+b)+c;③存在数0,使 0+a=a+0=a;④乘法的交换律 ab=ba;⑤乘法的结合律 a(bc)=(ab)c;⑥乘法的分配律 a(b+c)=ab+ac。0a=0 文字解释:一个数乘0还等于0。此外,有理数是一个序域,即在其上存在一个次序关系≤。0的绝对值还是0.有理数还是一个阿基米德域,即对有理数a和b,a≥0,b>0,必可找到一个自然数n,使nb>a。由此不难推知,不存在最大的有理数。值得一提的是有理数的名称。“有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是(rational number),而(rational)通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为(ratio),就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,而“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理(无理数就是无限不循环小数,π也是其中一个无理数)。
Copyright@ 2015-2022 百科大全版权所有 备案号:豫ICP备2021032478号-16 联系邮箱:89 71 80 9@qq.com